Final Assessment Schedule

Chemistry: Describe thermochemical and equilibrium principles (90310)

Evidence Statement:

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
1(a)	NH ₃ , HPO ₄ ²⁻ , HCl, H ₂ SO ₄	Three correct		
(b)	It can donate ${\bf and}$ accept ${\bf H}^+$ ${\bf HCO_3}^-$, can donate ${\bf H}^+$, can accept ${\bf H}^+$	It can donate and accept H ⁺ OR HCO ₃ ⁻ and can donate H ⁺ , OR HCO ₃ ⁻ and can accept H ⁺	HCO ₃ ⁻ and both justifications given.	
2(a)	ExothermicThe enthalpy change is negative.	Correct word circled and reason given.		
(b)	n(glucose) = $\frac{100}{180}$ = 0.556 (mol) $\Delta_r H = 0.556 \times -2820 = 1567 \text{ kJ mol}^{-1}$	Numerical value of $\Delta_r H$ correct. OR One step of the calculation correct.	Answer correct. Answer must include sign and unit(s).	
(c)	n(sucrose) = $\frac{150}{342}$ = 0.439 (mol) $\Delta_{\rm r}H = \frac{1}{0.439} \times -2478 = -5650 \text{ kJ mol}^{-1}$	Numerical value of $\Delta_r H$ correct. OR One step of the calculation correct.	Answer correct. Answer must include sign and unit(s).	
3(a) (b) (c)	 Surface area: Greater surface area: greater rate Greater surface area hence an increase in the frequency of collisions. 	Factor correctly identified.	Factor and relationship correctly identified.	Factor and relationship correctly identified and clearly explained.

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
4	 HA has higher [H₃O⁺] / [H⁺] HA's: rate of reaction with Mg will be higher or converse statement for HB. same amount acid is present and if same amount Mg then same volume of gas. 	One factor explained.	Two factors explained.	Three factors explained.
5(a)	$K_{c} = \frac{\left[NH_{3} \right]^{2}}{\left[H_{2} \right]^{3} \left[N_{2} \right]}$	Expression correct.		
(b)	 Equilibrium shifts to reduce pressure increase. Product side has fewer moles. Equilibrium shifts in forward dir./least amt dir. Therefore increase in % NH₃. 	Correct line identified and one bullet point.	Correct line identified and three points covered.	Correct line identified and all points covered.
6(a)	Observation: Colour of the solution turns purple or blue. Explanation: The (concentration) of Cl ⁻ is increased. Equilibrium shifts to decrease concentration of Cl ⁻ . Eqb shifts in favour of reactant. More blue [CoCl ₄] ²⁻ formed.	Observation correct.	Observation correct and: • recognises that [Cl ⁻] is increased • linked to direction of equilibrium shift.	Observation correct and fully explained.
(b)	 [CoCl₄]²⁻ equilibrium shifts to reduce temperature increase ΔH –ve/reaction exothermic reverse direction endothermic equilibrium shifts in endothermic/reverse direction. 	Correct ion circled and one point covered.	Correct ion circled and three points covered.	Correct ion circled and all points covered.

Q		Evidence			Achievement	Achievement with Merit	Achievement with Excellence
7(a)	Soln	$\underset{L^{-1}}{[H_3O^+]}/\operatorname{mol}$	$[\mathrm{OH^-}]$ / $\mathrm{mol}\ \mathrm{L}^{-1}$	рН	Two correct.	Four correct.	Six correct.
	HCl		1.39×10^{-13}	1.143			
	NaOCl	3.98×10^{-12}	2.51×10^{-3}				
	HOCI	4.46×10^{-4}		3.35			
(b)	OCI ⁻ , H ₃ C	OCΓ, H ₃ O ⁺			Either product correct.	Equation correct.	
(c)	• OCl ⁻ is b water	• OCl ⁻ is basic or reacts with water or reacts to accept H ⁺ from water			OCl ⁻ identified as: basic or species that reacts with H ₂ O or statement	Equation or description shows that OCl ⁻ accept	Explanation correct including:
		• $OCl^- + \underline{H_2O} \longrightarrow HOCl + OH^-$ • $[OH^-] > [H_3O^+]$ or $[OH^-]$ now increased.			regarding increased OH ⁻ .	H ⁺ from water and statement regarding increased OH ⁻ .	 balanced equation, equilibrium arrows statement regarding increased [OH⁻].

Judgement Statement

Chemistry: Describe thermochemical and equilibrium principles (90310)

Achievement	Achievement with Merit	Achievement with Excellence
EIGHT questions answered correctly. Minimum of 8 \times A	NINE questions answered correctly, including at least SEVEN at Merit level. Minimum of $7 \times M + 2 \times A$	TEN questions answered correctly, including at least FOUR at Merit level and at least FOUR at Excellence level. Minimum of 4 × E + 4 × M + 2 × A